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Abstract

Particle tracing involves calculating the trajectory (path) of parti-

cles through a flow field. When there are thousands of particles, the

calculations may require several minutes. Since each particle trace

can be computed independently, particle tracing can be considered

to be an embarrassingly parallel application. A particle tracing code

called Unsteady Flow Analysis Toolkit (UFAT) was parallelized on

the Convex, Cray, and SGI multiprocessor systems.
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1 Introduction

Particle tracing is a technique commonly used to visualize flow fields generated from

numerical simulations in Computational Fluid Dynamics (CFD). Three types of parti-

cle traces are sometimes computed: streamlines, pathlines, and streaklines. A stream-

line is a curve that is tangent to a vector field at an instant in time. Because stream-

lines axe computed based on one vector field, they axe also known as instantaneous

streamlines. A pathline is a curve that shows the trajectory of a particle released from

a fixed location, called the seed location. A streakline is a line joining the positions,

at an instant in time, of all particles that have been released from a seed location.

Streaklines can be simulated by releasing particles continuously from the seed loca-

tions at each time step. Streaklines depict time-varying phenomenon that are not

easily shown in instantaneous streamlines. For example: vortex shedding, formation,

and separation [1].

In a 3D unsteady (time-dependent) flow simulation, scientists often generate

tens of thousands of time steps, and each time step can require tens of megabytes of

disk space. Interactive visualization of unsteady flow data sets with disk requirements

of this magnitude is very difficult or nearly impossible due to the current hardware

constraints. Furthermore, it may take several minutes to compute particle traces at

each time step. A particle tracing program called the Unsteady Flow Analysis Toolkit

(UFAT) has been developed to compute particle traces from large-scale 3D unsteady

flow data sets [4]. UFAT computes particle traces from the specified seed locations.

If there are several thousand particles, then it can take several minutes to compute

the traces at each time step. To take advantage of multiprocessor systems, UFAT

was optimized to perform the particle tracing task in parallel.

This paper describes the code modification made to parallelize UFAT, and

the performance results of parallel UFAT are presented. First, the features of UFAT

are described. A particle tracing algorithm is then described, followed by the details

of code modifications made to parallelize UFAT. Finally, the performance results of

parallel UFAT are analyzed.

2 Unsteady Flow Analysis Toolkit (UFAT)

UFAT was developed to compute streamlines, pathlines, and streaklines from large-

scale unsteady flow fields in curvilinear (structured) grids. Streamlines are computed



basedon one vector field at a specific time step. Pathlines are simply the trajectories

of particles through time. Streaklines are computed by releasing particles from the

given seed locations at each time step and tracing all the particles that were released

in the previous time steps. The time required to compute streamlines is relatively

constant for all time steps since the number of particle traces (the number of seed

locations) at each time step is constant. The time required to compute pathlines is

also relatively constant for all time steps since the number of particles at each time

step is the same or less than the number of seed locations. Some particles may exit the

grid domain earlier than other particles; thus, the number of particles can decrease

as time elapses. For streaklines, the number of particles at time t is t x N,, where

N, is the number of seed locations. The computation time for streaklines increases

as time elapses because the number of particles increases as time elapses.

UFAT currently provides the following basic features: (1) support single and

multi- block curvilinear grids with or without rigid body motion; (2) compute instan-

taneous streamlines, pathlines, and streaklines; (3) support second-order and fourth-

order Runge-Kutta integration schemes with adaptive stepsizing; (4) save particle

traces for playback; (5) assign color to particles based on a specified scalar quantity;

and (6) provide a save/restore option so that particle tracing can be performed over

several run sessions.

3 Particle Tracing Algorithm

The basic problem of particle tracing can be described as follows: given a vector

function V(p) and the initial position of a particle p, find the trajectory (path) of p

through the vector field. The particle is assumed to be massless. The path of p is

governed by the following equation:

Using the second-order Runge-Kutta integration scheme with adaptive stepsizing, let

p" = + h (pk),

pk+, = pk + h(_'(pk) + t_(p'))/2 and k = k + 1,



where h = c/max(#(pk)), max()is the maximum velocity component of V(pk), and

0 < c < 1. The constant c is used for adaptive stepsizing and it controls the number

of steps that p will a_lvance in each grid cell. Adaptive stepsizing is required when

the velocity varies rapidly in some regions of the grid. The algorithm described above

assumes that the flow is steady (time-independent). For unsteady flow, modifications

are required to consider time as a parameter in the integration, see [4].

4 Parallelization

For brevity, this section describes only the code modification made to parallelize the

streakline calculation. The code modification made for parallelizing streamline and

pathline calculations are very similar. Let Nt represent the number of time steps

and No represent the number of seed locations. Procedure Advect () below computes

streaklines by stepping through the given time steps.

1. Procedure Advect ()

2. For t = 1 to Nt do

3. For s = 1 to No do

4. For p = 1 to Trace_Length[s] do

5. ldvect_Particle(particle(s,p) )

6. End for

7. Trace._Length[s] = Trace_Length[s] + 1

8. Let p' ffia new particle released from seed s

9. particle(s, Trace_Length[s]) = p'

10. End for

11. End for

The s loop in the above procedure is performed for each seed. In the p loop,

particle p in trace s, denoted by particle( s, p), is advected by calling procedure

Advect_Particle(), which implements the particle integration scheme described in

the previous section. A detailed description of this procedure is given in [4]. In line

eight of procedure Advect () above, a new particle is released from the given seed

location at each time step, and then it is stored in the current trace (line nine). The

s loop in procedure Advect () was chosen for parallelization because it is the outer-

most loop of the particle tracing algorithm that can be parallelized without any data

dependency. Modifications were also made so that two or more processors will not

attempt to update the same global variable simultaneously. The program was writ-



ten so that eachiteration of the s loop can be performed in any order without data

dependency.

During particle tracing, UFAT requires the velocity field to advect the parti-

cles. The velocity field is currently not given in the input data and must be com-

puted. There are several approaches for computing the velocity field. Three possible

approaches are: preprocessing, lazy evaluation, and cell caching. The first approach

is to preprocess (pre-compute) the velocity at each grid point and store the velocity

in a global data area. Although this approach is simple, it is not efficient for grids

with several million points. Particle traces often only traverse a small region of the

grid. Hence, the velocities at many grid points are not used, and velocity calculations

at these grid points are unnecessary. Another approach called 'lazy evaluation' is

to compute and store the velocities only when they are used. This approach was

suggested in [2] to compute the velocity field. When the velocity at a grid point is

needed, the program checks to see if it has already been computed. If the velocity has

not been computed, then it is computed and saved. A flag is set to indicate that the

velocity has been computed. An advantage of this approach is that it eliminates un-

necessary velocity calculations. A disadvantage is that additional memory is needed

to store the velocity and its velocity flag at each grid point. During initialization, the

flag at each grid point also needs to be initialized. An alternative approach called

cell caching [3] is to maintain a local velocity vector that is updated as the particle

advances from one cell to another. Each processor will maintain a local velocity vec-

tor. This technique is attractive for the parallel version of UFAT because it avoids

simultaneous velocity modification.

The following subsections discuss the machine-dependent modifications that

were made for parallelizing UFAT on the Convex, Cray, and SGI systems. The

discussions refer to procedure Advect () described earlier.

4.1 Parallelizing UFAT on the Convex Systems

For parallelization on the Convex systems, a compiler directive was placed before

the s loop in procedure Advect(). The #pragma _CNX force_parallel directive

forces the compiler to parallelize the s loop regardless of any data dependency [5].

In order to use this directive, the -I}3 flag must be included in the compile option

list. On the Convex systems, the FORTRAN subroutines are compiled with the -re

option, which generates reentrant code and allows the FORTRAN codes to be invoked

within a parallel code segment. All SAVE declaration statements in the FORTRAN
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subroutines that are compiled as reentrant codes are removed to avoid simultaneous

data update. Procedure Advect() is shown below with the Convex compiler directive.

i. Procedure AdvecZ()

2. For t= 1Zo Nt do

tpragma _CNX force_parallel

3. For s = I to Ns do

10. End for

11. End for

4.2 Parallelizing UFAT on the Cray Systems

On the Cray systems, the s loop was multitasked by placing the #pragma _CRI

taskloop directive before the loop. All codes executed inside the s loop are col-

lectively referred to as a multitasked code region.

I. Procedure Advect()

2. For t= i to Nt do

#pragma _CRI taskloop private(s) shared(<global variables>)

3. For s : 1 to Ns do

10. End for

11. End for

The -h task3 flag was used during compile to enable the #pragma directive. The

multitasking feature in Cray requires that all global variables referenced in a multi-

tasked code region be declared as shared variables in the directive statement [6]. This

requires modifying all subroutines referenced in the multitasked code region so that

global variables are passed as input arguments. For example, in line five of procedure

Advect () in Section 4, all global variables required by procedure Advect..Part:i.cle()

are passed as input arguments.



4.3 Parallelizing UFAT on the SGI Systems

Several SGI library functions for parallel programming were used to parallelize UFAT

on the SGI systems. The s loop was replaced by the call to re_fork (Parallel_.t.dvect),

where m_.fork() creates a number of processes to execute procedure Parallel_Advect ()

in parallel. The number of processes depends on the number of processors that are

available on the system and is set by calling m_set_procs(n_processors). The ar-

gument n_processors is set to the returned value of prctl (PP,_HAXPPROCS), which

returns the maximum number of processors that the calling process can use [7]. Pro-

cedure ParallelAdvect () is shown below:

Procedure Parallel_Advect ()

while ( (s-re_next()) <= Ns) do

For p = 1 to Trace_Length[s] do

Advect_Particle(partiele(s,p) )
End for

Trace_Length[s] = TraceLength[s] + 1

Let p' = a new particle released from seed s

particle(s, Traced_ength[s]) = p'
End while

When the re_fork() library function is called, it resets a global counter to zero. The

counter is incremented each time when m_ext () is invoked, and it is the number of

iterations that have been performed in the parallel loop (the while loop shown above).

A requirement of re_fork() is that the passing function can have a maximum of six

arguments. Procedure Parallel_Advect() was written so that all input arguments

are declared as global variables instead.

5 Performance Results

Two unsteady flow data sets were used to evaluate the performance of parallel UFAT.

Tests were performed on the five systems listed on the next page. Each test was

executed several times, and the best results were used. On the SGI and Convex

systems, the tests were performed when the systems were mostly idle. It was difficult

to find idle time on the Cray C90 system; hence, batch jobs were submitted to run

the tests in a time-sharing environment.
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• Silicon Graphics 4D/320, two 33 megahertz (MHZ) processors, 256 megabytes

(MB) memory

• Silicon Graphics 4D/340, four 33 MHZ processors, 128 MB memory

• Convex C3240, four 25 MHZ processors, 1 gigabyte (GB) memory

• Convex C3820, two 66 MHZ processors, 1 GB memory

• Cray C90, sixteen 240 MHZ processors, 256 megawords (MW) memory

5.1 Delta Wing

The first test data set was generated from a numerical simulation of the descending

Delta Wing which consists of 900 thousand grid points. The size of the grid file is 16

megabytes (MB) and the solution file is 20 MB. For the performance tests, 200 time

steps were used, which required 200x(16+20) MB -- 7.2 gigabytes of disk storage.

Since there was not enough disk space on the SGI systems to store the entire test

data set, the grid is assumed to be fixed (steady) and 18 solution files were repeated

for a total of 200 time steps. At each time step, UFAT released 163 particles into

the flow field from the given seed locations to simulate streaklines. Table 1 shows

the performance results of UFAT on the SGI 4D/320 and 4D/340 systems. For the

performance analysis, the following parameters are reported: (1) execution time,

which is measured in wall clock minutes; (2) speedup factor, which is the execution

time divided by the execution time of the program running on one CPU; (3) efficiency,

which is the speedup factor divided by the number of CPUs used. Efficiency measures

how well the code was para]lelized. As shown in Table 1, the performance improved

by a factor of 1.3 times when two processors were used on the SCI 4D/320 system. On

the SGI 4D/340 system, the performance increased by 2.1 times when four processors

were used. The disk I/O time on these systems accounts for approximately 25% of

the execution time. Thus, the efficiency numbers were low (0.63 and 0.53).

SGI 4D/320 SGI 4D/340

CPUs Time Speedup Efficiency Time Speedup Efficiency

1 108.4 m 1.0 -- 75.0 m 1.0

2 82.0 m 1.3 0.65 -- -- --

4 -- -- -- 35.4 m 2.1 0.53

Table 1. Performance of UFAT on two SGI systems using the Delta Wing

data set.



Figure 1 depicts the performanceplot of UFAT on the SGI 4D/340 system

using one processor. The solid (filled) bar at each time step denotes the I/O time for

that time step and the unfilled bar denotes the computation time at each time step.

The unfilled bar is stacked on top of the solid bar. Hence, the height of each stacked

bar represents the combined I/O and computation time at a specific time step. The

disk I/O rate of the SGI 4D/340 system used for the test was approximately 4 MB

per second. Figure 2 depicts the performance plot when four processors were used on

the SGI 4D/340 system. The I/O time bars in Figures 1 and 2 are almost identical

because the parallelization is performed on the computation part of the code only.

The performance became I/O bound (i.e. the I/0 time accounts for more than half

of the execution time) when four processors were used on the SGI 4D/340 system.

The performance of the I/O was very unstable on the two SGI systems used. This is

evident by the rapid changes in the height of the solid bars shown in Figures 1 and

2. The reason for this unstable I/O rate could be caused by a buffer caching problem

on the system.

Table 2 shows the performance results on the Convex C3240 and C3820 sys-

tems. The performance improved by a factor of 2.5 times when four processors were

used on the Convex C3240. As shown in Table 2, when two processors were used, the

performance improved by 1.7 times on the Convex C3820. Figures 3 and 4 depict the

performance plots on the Convex C3240 system. The disk I/O rate on the Convex

C3240 system used for the test was approximately 30-40 MB per second. From the

figures, it can be seen that the overall performance is no longer I/O bound because

of the fast disk I/O rate.

CPUs

1

2

4

Convex C3240 Convex C3820

Time Speedup Efficiency Time Speedup Efficiency

68.1 m 1.0 -- 31.4 m 1.0 --

-- -- -- 18.7 m 1.7 0.85

27.4 m 2.5 0.63 -- -- --

Table 2. Performance of UFAT on two Convex systems using the Delta

Wing data set.

Table 3 shows the performance of UFAT on the Cray C90 system. On the

Cray C90, a fast disk (solid-state disk) was used to store the test data set; hence, the

I/O time was negligible. When two processors were used, the speedup factor was 2.0

times. Based on the the efficiency numbers shown in the table, it can be concluded
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that the performance did not improve significantly when eight processors were used.

This is due to the fact that the amount of work in the multitasked code region is

not significant enough to fully take advantage of eight processors. Figures 5 and 6

depict the performance plots on the Cray C90 using one and two processors. The

performance plots for using four and eight processors do not differ significantly from

Figure 6, thus they are not shown.

CPUs

1

2

4

8

Cray C90

Time Speedup Efficiency

15.7 m 1.0 --

7.8 m 2.0 1.0

5.4 m 2.9 0.73

4.4 m 3.6 0.45

Table 3. Performance of UFAT on the Cray C90 using the Delta Wing

data set.

5.2 Clipped Delta Wing

The second test data set is a clipped Delta Wing with oscillating control surfaces.

Each oscillation cycle consists of 5,000 time steps. For visualization, every 50th time

step is saved for a total of 100 time steps per cycle. The clipped Delta Wing grid

consists of 250 thousand points in seven blocks. Each grid file is 4 MB and the

solution file is 5 MB. Thus, a total of 100x(4+5) MB = 900 MB disk space was used.

Two cycles of the data (200 time steps) were used to compute streaklines. At each

time step, 36 particles were released from the seed locations. Table 4 depicts the

performance results of UFAT on two SGI systems. On the SGI 4D/320 system, the

performance improved by a factor of 1.3 times when two processors were used. On

the SGI 4D/340 system, the performance improved by 2.1 times when four processors

were used. The efficiency numbers are identical to those shown in Table 1. This is

due to the slow disk I/O performance on the two SGI systems used.

Table 5 shows the performance on two Convex systems. On the Convex C3240

system, the performance improved by a factor of 2.9 times when four processors were

used. On the Convex C3820 system, the computation time improved by 1.6 times

when two processors were used. The efficiency numbers on the two Convex systems

are acceptable.
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CPUs

2
4

Time
45.0m
31.0m

SGI 4D/320
Speedup

1.0
1.3

Efficiency

0.65

Time

36.8 m

15.4 m

SGI 4D/340

Speedup

1.0

2.1

Efficiency

0.53

Table 4. Performance of UFAT on two SGI systems using the clipped

Delta Wing data set.

CPUs

1

2

4

Convex C3240 Convex C3820

Time Speedup Efficiency Time Speedup Efficiency

32.5 m 1.0 -- 16.5 m 1.0 --

-- -- -- 10.2 m 1.6 0.80

11.2 m 2.9 0.73 -- -- --

Table 5. Performance of UFAT on two Convex systems using the clipped

Delta Wing data set.

The performance on the Cray C90, as shown in Table 6, improved by factors of 1.9,

3.2, and 4.1 times when two, four, and eight processors were used, respectively. The

efficiency numbers shown in the table indicate that the performance did not improve

significantly when eight processors were used. This is again due to the insufficient

amount of work in the multitasked code region.

CPUs

1

2

4

8

Time

4.5 m

2.4 m

1.4 m

1.1m

Cray C90

Speedup Efficiency

1.0

1.9 0.95

3.2 0.80

4.1 0.51

Table 6. Performance of UFAT on the Cray C90 using the clipped Delta

Wing data set.
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6 Summary

A particle tracing code was parallelized on the Convex, Cray, and SGI systems. On

the Convex systems, parallel UFAT ran reasonably efficient on the Convex C3240

and the Convex C3820, and the performance was no longer I/O bound because of

the fast disk I/0 rate. On the Cray C90 system, the performance of parallel UFAT

did not improve significantly when eight processors were used. This is because the

work load in the multitasked code region was not significant enough to benefit from

using eight processors. Parallel UFAT did not achieve the expected performance on

the SGI systems due to the slow disk I/O rate on the SGI systems used.
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